
ReCon: Revealing and Controlling Privacy Leaks
in Mobile Network Traffic

Jingjing Ren1, Ashwin Rao3, Martina Lindorfer4, Arnaud Legout2, David Choffnes1

1Northeastern Univ.,2Inria Sophia Antipolis, 3Univ. of Helsinki, 4Vienna Univ. of Technology

Abstract
Mobile systems have become increasingly popular for pro-
viding ubiquitous Internet access; however, recent studies
demonstrate that software running on these systems exten-
sively tracks and leaks users’ personally identifiable infor-
mation (PII). We argue that these privacy leaks persist in
large part because mobile users have little visibility into PII
leaked through the network traffic generated by their de-
vices, and have poor control over how, when and where that
traffic is sent and handled by third parties.

In this paper, we describe ReCon, a cross-platform system
that reveals PII leaks and gives users control over them with-
out requiring any special privileges or custom OSes. Specif-
ically, our key observation is that PII leaks must occur over
the network, so we implement our system in the network us-
ing a software middlebox built atop the Meddle platform.
While this simplifies access to users’ network flows, the key
challenges for detecting PII from the network perspective are
1) how to efficiently and accurately detect users’ PII without
knowing a priori what their PII is and 2) whether to block,
obfuscate, or ignore the PII leak. To address this, we use
a machine learning approach to detect traffic that contains
PII, display these behaviors via a visualization tool and let
the user decide how the system should act on transmitted
PII. We discuss the design and implementation of the sys-
tem and evaluate its methodology with measurements from
controlled experiments and flows from 16 users (19 devices)
as part of an IRB-approved user study.

1. INTRODUCTION
There has been a dramatic shift toward using mobile de-

vices such as smartphones and tablets as the primary inter-
face to access Internet services. Unlike their fixed-line coun-
terparts, these devices also offer ubiquitous mobile connec-
tivity via WiFi and cellular data access, and are equipped
with a wide array of sensors (e.g. GPS, camera, and micro-
phone).

The combination of rich sensors and ubiquitous connec-
tivity make these devices perfect candidates for privacy inva-
sion. Previous work shows that apps extensively track users
and leak their personally identifiable information (PII) [13,

16, 20, 26, 40], and users are generally unaware and unable
to stop them [15, 22].

Previous attempts to address PII leaks face challenges of a
lack of visibility into network traffic generated by mobile de-
vices and the inability to control the traffic. Passively gath-
ered datasets from large mobile ISPs [40, 42] provide vis-
ibility but give researchers no control over network flows.
Likewise, custom Android extensions provide control over
network flows but measurement visibility is limited to the
devices running these custom OSes or apps [17], often re-
quiring warranty-voiding “jailbreaking”. Static and dynamic
analysis tools can identify and block privacy leaks based on
the content of the code implementing an app, but cannot de-
fend against dynamic code loading at run time nor explore
every possible code path.

We argue that improving privacy in this environment re-
quires (1) trusted third-party systems that enable auditing
and control over PII leaks, and (2) a way for such auditors to
identify PII leaks. Our key observation is that a privacy leak
must (by definition) occur over the network, so interposing
on network traffic is a natural way to detect and mitigate PII
leaks. Based on this insight, we propose a simpler, more
effective strategy than previous approaches: using indirec-
tion [37,38] to improve visibility and control for PII leaks in
mobile network traffic. We use natively supported OS fea-
tures to redirect all of a device’s Internet traffic to a third-
party server to identify and control privacy leaks in network
traffic. This allows us to explore the potential of detecting
privacy leaks from network flows without needing privileged
access to a mobile ISP; rather, we use software middleboxes
running atop trusted servers (e.g. in users’ home networks,
or on a trusted cloud platform). This solution does not re-
quire rooting devices or deploying hardware, so it is imme-
diately deployable globally.

This paper focuses on the problem of understanding and
mitigating privacy leaks at the network level. We describe
the design and implementation of a system to address this
problem called ReCon, which detects PII leaks from network
flows alone, presents this information to users, and allows
users fine-grained control over which information is sent to
third parties. We use machine learning and crowdsourcing-
based reinforcement to build classifiers that reliably detect
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private information in network flows, even when we do not
know a priori what information is leaked and in what format.
Because mobile traffic increasingly uses SSL, we describe
techniques that allow our system to detect private informa-
tion leaks in encrypted flows with user opt in as well.
Our key contributions are as follows:
• A study using controlled experiments to demonstrate that

significant PII leaks from mobile devices in plaintext,
motivating the need for (and potential effectiveness of)
systems that identify PII leaks from network flows. We
find extensive use of unique identifiers (> 20% of the
top 100 Android apps) and even six of the top 100 iOS
apps leaking passwords over plaintext.
• An approach to detect and extract PII leaks from arbi-

trary network flows, using machine learning informed by
extensive ground truth for more than 33,900 flows gen-
erated by mobile apps.
• A system that enables users to access information about

privacy leaks from network flows, provide feedback about
relevant leaks, and optionally change information sent to
third parties.
• An evaluation of our system, showing it is efficient (clas-

sification can be done in less than one ms), and that it ac-
curately identifies leaks (with 98.2% for the vast major-
ity of flows in our dataset). We show that a simple C4.5
Decision Tree (DT) classifier is able to identify PII leaks
with the accuracy comparable to the several ensemble
methods atop DTs (AdaBoost, Bagging, and Blending)
that take significantly more time (by a factor of 6.43) to
achieve the same level of accuracy.
• A characterization of our approach on traffic generated

by user devices as part of an IRB-approved user study.
We demonstrate that our approach successfully identi-
fies PII leaks (with users providing 581 labels for PII
leaks) and characterize how these users’ PII is leaked “in
the wild.” For example, we find sensitive information
such as usernames, passwords, gender, and locations be-
ing leaked in plaintext flows.

In the next section, we discuss related work and describe
the Meddle platform on which ReCon is built. Section 3
presents the results of controlled experiments identifying ex-
tensive information leakage in popular apps. We then de-
scribe the design (Section 4) and implementation (Section 5)
of ReCon. We evaluate the effectiveness of our approach us-
ing controlled experiments and data from users in Section 6.
In Section 7 we discuss limitations and future work, and con-
clude in Section 8.

2. BACKGROUND
In this section, we describe previous work in the area of

privacy leaks and provide background information on the
Meddle system on which our ReCon system is built.

2.1 What is PII?

Personally identifiable information (PII) is a generic term
referring to “information which can be used to distinguish
or trace an individual’s identity” [28]. These can include
geographic locations, unique identifiers, phone numbers and
other similar data.

Central to this work is identifying PII leaked by apps over
the network. For the purpose of this work, we define PII to
be either 1) Device Identifiers specific to a device or OS in-
stallation (ICCID, IMEI, IMSI, Android ID), 2) User Iden-
tifiers which identify the user (name, gender, birthday), 3)
Contact Information (telephone numbers, address book in-
formation), 4) Location (GPS latitude/longitude), or 5) Cre-
dentials (username, password). This list of PII is informed
by information leaks observed in this study, but is not ex-
haustive. As we identify other types of PII leaks we will
incorporate them into our analysis.

2.2 Related Work
Recent studies show that most of our time spent online is

being tracked by third parties, and the apps we use are leak-
ing personally identifiable information (e.g. location, pass-
words, and phone numbers) over the Internet without our
knowledge [5, 35, 39]. These third parties that gather infor-
mation about users’ Web and app usage are commonly called
Trackers [19].

In the fixed-line environment most tracking is performed
through Web browsers, a topic that is the focus of the Mozilla
LightBeam project [5], also explored by Roesner et al. [35].
In the mobile environment, the problem worsens, mainly be-
cause mobile devices make significant amounts of PII read-
ily available to apps (e.g. location, phone number, contacts,
etc); early studies showed information such as location, user-
names, passwords and phone numbers were leaked to third
parties by popular apps [39]. A recent study [12] used Taint-
Droid along with notifications of privacy leaks to understand
the impact of user awareness of privacy violations.

Several efforts systematically identify privacy leaks from
mobile devices, and develop defenses against them. These
approaches generally fit into information flow analysis, both
through dynamic and static analysis, and network flow anal-
ysis.
Dynamic Analysis. One approach, dynamic taint tracking,
modifies the device OS to track access to PII at runtime [17]
using dynamic information flow analysis, which taints PII as
it is copied, mutated and exfiltrated by apps. This ensures
that all access to PII being tracked by the OS is flagged;
however, depending on the implementation it can result in
large false positive rates (due to coarse-granularity tainting),
false negatives (e.g. because the OS does not store leaked
PII such as a user’s password), and incur significant runtime
overheads that discourage widespread use. Running taint
tracking today requires rooting the device, which is typically
conducted only by advanced users, and can void the owner’s
warranty. In addition, taint tracking does not address the
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problem of which PII leaks should be blocked (and how), a
problem that is difficult to address in practice [25].
Static Analysis. An alternative approach is to perform static
analysis (e.g. using data flow analysis or symbolic execu-
tion) to determine a priori whether an app will leak privacy
information [11, 16, 27, 44]. This approach can avoid run-
time overhead by performing analysis before code is exe-
cuted, but state-of-the-art tools suffer from inprecision [14]
and symbolic execution can be too time-intensive to be prac-
tical. Further, deploying this solution generally requires an
app store to support the analysis, make decisions about which
kinds of leaks are problematic, and work with developers to
address them. For example, F-Droid [4] is an app store that
statically analyzes the apps and warns users about tracker
libraries used by the apps. Static analysis is also limited
by obfuscation, and tends not to handle reflection and dy-
namically loaded code [46]. A recent study [32] finds dy-
namically loaded code is increasingly common, comprising
almost 30% of the latest goodware app load code at runtime.

These approaches, and follow-up work that extends them [10,
18,23,29,33,43,45], can improve mobile privacy but depend
on a deployment model that restricts their impact to custom
OSes or app stores. Privacy leakage, however, is an evolving
target affecting all users and all platforms.

The approach taken in this work is to analyze network
flows for PII leaks. Previous studies using network traces
gathered inside a mobile network [19, 40] and in a lab set-
ting [30] identified significant tracking, despite not having
access to software instrumentation. In this work, we build
on these observations to both identify how users’ privacy is
violated and control these privacy leaks regardless of the de-
vice OS or network being used.

2.3 Meddle
Existing solutions to address privacy in mobile systems

are limited because they do not have visibility into network
flows from mobile devices, the ability to modify them, and/or
a deployment model that facilitates large-scale adoption to
ensure broad impact. At first glance, addressing all these
limitations seems to impose a high barrier to success, as it
may require custom OSes and/or privileged access to mobile
carrier networks.

The key insight that enables this work is that we can in
fact achieve these goals today, without requiring any privi-
leged access to networks or OS modifications. Using a sys-
tem we call Meddle, we achieve visibility into network traf-
fic through redirection, i.e. sending all device traffic to a
proxy server using native support for virtual private network
(VPN) tunnels (top of Fig. 1). Once traffic arrives at the
proxy server, we use software middleboxes to enable users
and researchers to exert control over mobile-device traffic
(middle of Fig. 1).

Meddle supports a plugin infrastructure for custom flow
processing. Each plugin takes as input a network flow and
outputs a (potentially modified or empty) network flow. When
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Figure 1: Meddle Architecture. Mobile devices (top)
communicate with a Meddle frontend (VPN proxy and/or
Web proxy). VPN proxy traffic is forwarded to a meddle-
box, which provides software middlebox services to monitor
and/or interpose on network traffic.

a packet arrives at Meddle, a software-defined switch [7]
determines the ordered set of plugins that the correspond-
ing flow will traverse. Plugins support a variety of features
such page speed optimization and content blocking (e.g. for
blocking ads).

Meddle supports controlled experiments on mobile device
network traffic, and a key advantage of this approach is that
it facilitates in situ measurement and experimentation via
an end-user deployment. Toward this latter goal, Meddle
presents a number of incentives that appeal to a wide range
of users, including improved security through encrypted tun-
nels and device-wide content filters often used for ad-block-
ing. In this paper, we describe how to use this platform to
enable privacy revelations [41] via the ReCon tool, which
allows users to see how they are being tracked by apps, and
allows them to customize how this information is shared.

Meddle is easy enough to install that even non-expert users
can run it. Configuring a VPN on iOS is done via installing
a configuration file which we provide, and on Android re-
quires filling out five fields. We are hosting a cloud-based
deployment that is free for users, to support large numbers
of flows for in situ experimentation. The initial prototype
has reasonably low overheads (typically between 5-30 ms of
extra delay, and a 10% increase in power consumption) [34].
As evidence of the potential to recruit users, a related ap-
proach [3] that uses APNs and in-network proxy-based per-
formance optimizations attracted tens of thousands of users.

2.4 Protecting User Privacy
An important concern with a Meddle user study is pri-

vacy. Using an IRB-approved protocol [6], we encrypt and
anonymize all captured flows before storing them. The se-
cret key is stored on a separate secure server and users can
delete their data at any time.

We will make the Meddle software publicly available. For
those who want to run their own Meddle instance (e.g. if they
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Figure 2: Meddle Deployment Options. Users concerned
about the privacy of their sensitive traffic can deploy their
private Meddle instance and e.g. redirect plaintext traffic to
our EC2 deployment and SSL traffic to their trusted instance.

do not want to participate in our study), the Meddle server re-
quires only that a user has root on a modern Linux OS. Med-
dle can be deployed in a single-machine instance on a home
computer, as Raspberry Pi plugged into a home router, a ded-
icated server in an enterprise, or VM in the cloud, as depicted
in Figure 2. Specifically, the “Trusted MITM” in the figure
refers to a trusted Meddle instance (e.g. running in the user’s
home network) that can man-in-the-middle HTTPS connec-
tions to identify PII leaked over encrypted flows. Meddle
is currently in private beta with dedicated-server, EC2, and
Aliyun deployments in the US, France, and China.

3. MOTIVATION AND CHALLENGES
In this section, we describe how we use controlled experi-

ments to measure PII leakage with ground-truth information.
We find a surprisingly large volume of PII leaks from popu-
lar apps from three app stores, particularly in plaintext (un-
encrypted) flows. Based on these results, we identify several
core challenges for detecting PII leaks when we do not have
ground-truth information, i.e. for network traffic generated
by arbitrary users’ devices. In the next section, we describe
how to automatically infer PII leaks in network flows when
the contents of PII is not known in advance.

3.1 Methodology
Our goal with controlled experiments is 1) to obtain ground-

truth information about network flows generated by apps and
devices, and 2) to characterize the network activity for a
large variety of apps in a lab setting. We use this data to
understand how to model apps’ network behavior, how to
map network flows to the app that generated them, and how
to identify PII in those network flows. We use SSL bump-
ing [8] to decrypt and inspect SSL flows only during our
controlled experiments where no user traffic is intercepted.
Device Setup. We conducted our controlled experiments us-
ing two Android devices (running Android 4.0 and 4.3) and
an iPhone running iOS 6. We start each set of experiments
with a factory reset of the device followed by connecting the
device to Meddle.
Manual Tests. We manually test the 100 most popular free
Android apps in the Google Play store and 209 iOS apps

from the iOS App Store on April 4, 2013. For each app, we
install it, enter user credentials, interact with it for up to 10
minutes, and uninstall it. This allows us to characterize real
user interactions with popular apps in a controlled environ-
ment. We enter unique and distinguishable user credentials
when interacting with apps to easily extract the correspond-
ing PII from network flows (if they are not obfuscated).
Automated Tests. The second set of controlled experiments
consist of fully-automated experiments on 922 Android apps
from the free, third-party Android market AppsApk.com [2].
We perform this test because Android users can install third-
party apps without rooting their device. Our goal is to un-
derstand how these apps differ from those in the standard
Google Play store, as they are not subject to Google Play’s
restrictions and vetting process. We automate experiments
using adb to install each app, connect the device to the Med-
dle platform, start the app, perform approximately 100,000
actions using Monkey [9], and finally uninstall the app and
reboot the device to end any lingering connections. We limit
the automated tests to Android devices because iOS does not
provide equivalent scripting functionality.
Andrubis/TaintDroid. The Andrubis sandbox uses Taint-
Droid to identify PII leaks from Android apps during dy-
namic analysis. They find that data leaks to the network
increased from 13.45% to 49.78% of all submitted apps be-
tween 2010 and 2014 [32]. To understand PII leaks based
on their analysis, we submit the above 922 Android apps in
our dataset to Andrubis and report the results. Andrubis was
able to report the results for only 770 of the 922 apps be-
cause some apps do not generate network traffic and others
exceed the file-size limit for Andrubis.
Analysis. We use tcpdump and bro to analyze the network
traffic generated during our experiments, then search for the
conspicuous PII that we loaded onto devices and used as in-
put to text fields. We classify some of the destinations of
PII leaks as trackers using a publicly available database of
tracker domains [1]. We further augment this list with the
domains that received PII during our controlled experiments
(discussed in §3), and recent research on mobile ads [25,31].

3.2 PII Leaked from Popular Apps
We use the traffic traces from our controlled experiments

to identify how apps leak PII over HTTP and HTTPS. For
our analysis we focus on the PII detailed in §2.1. Some of
this information may be required for normal app operation;
however, sensitive information such as credentials should
never travel across the network in plaintext.

Table 1 presents PII leaked by Android and iOS apps in
the plaintext. The device identifiers (specifically the Android
ID tied the Android device) that can be used to track user’s
behavior, are most frequently leaked PII by Android apps.
Table 1 shows that other PII—user identifiers, contacts, loca-
tion, and credentials such as username and password—are
also leaked in plaintext.
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# Apps leaking a given PII
Testing # of Apps Device User Contact

OS Store Technique Tested Identifier Identifier Information Location Credentials
iOS App Store Manual 209 4 (1.9%) 4 (1.9%) 13 (6.2%) 20 (9.5%) 6 (2.8%)
Android Play Store Manual 100 34 (34%) 2 (2%) 3 (3%) 10 (10%) 1 (1%)
Android AppsApk Auto. (Monkey) 922 287 (27.5%) 1 (0.11%) 12 (1.3%) 12 (1.3%) 0(0%)
Android AppsApk Auto. (Andrubis) 770 89 (11.5%) N-A 0 (0%) 7 (0.9%) N-A

Table 1: Summary of PII leaked in plaintext (HTTP) by Android and iOS apps. The popular iOS apps tend to leak the
location information in the clear (20 iOS apps leak location info.) while Android apps leak the device identifiers in the clear.

We also observed that the information leaked by an app
depends on the OS. Of the top 100 apps for Android, 26
apps are available on both iOS and Android. Of these 26
apps, 17 apps leaked PII on at least one OS: 12 apps leaked
PII only on Android, 2 apps leaked PII only on iOS, while
only one app had the same data leakage in both OSes. Of
the remaining 2 apps that leaked PII, one app leaked the de-
vice identifiers (specifically the Android ID and IMEI) in
Android and the credentials (username) in iOS, while the
other app leaked the device identifier (Android ID) in An-
droid and location in iOS. The difference in the PII leaks is
primarily due to the different privileges that the underlying
OS provides these apps, and that iOS was tested manually
(and thus facilitated entering username and passwords in the
appropriate fields).

During our experiments, we observed that PII is also sent
over encrypted channels. We observe that three of the top 5
domains that receive PII over SSL are trackers. Our obser-
vations highlight the limitations of current mobile OSes with
respect to controlling access to PII via app permissions. In
particular, it is unlikely that users are made aware that they
are granting access to PII for tracker libraries embedded in
an app that serves a different purpose. This problem is per-
vasive: of the 77 domains that received some PII in the clear
or over SSL during our controlled experiments, 18 domains
were trackers.

We note that our observations are a conservative estimate
of PII leakage because we cannot detect PII leakage using
obfuscation (e.g. via salted hashing). Regardless, our study
shows that a significant number of PII leaks are visible from
Meddle.

3.3 Summary and Challenges
While the study in the previous section trivially revealed

significant PII leaks from popular mobile apps, several key
challenges remain for detecting PII leaks more broadly.
Detection Without Knowing PII. A key challenge is how
to detect PII when we do not know the contents of PII in
advance. As a strawman solution to this challenge, consider
an extension to the above approach where we automatically
run every app in every app store. This allows us to formu-
late a regular expression to identify PII leaks from every app
regardless of the user: we simply replace the PII with a wild-
card.

There are several reasons why this is insufficient to iden-
tify PII leaks for arbitrary user flows. First, it is impracti-

cally expensive to run this automation for all apps in every
app store, and there are few tools for doing this outside of
Android. Second, it is difficult (if not impossible) to use
automation to explore every possible code path that would
result in PII leaks, meaning this approach would miss sig-
nificant PII. Third, this approach is incredibly brittle – if a
tracker changes the contents of flows leaking PII at all, the
regular expression would fail.

These issues suggest an alternative approach to identify-
ing PII in network flows: use machine learning to build a
model of PII leaks that accurately identifies them for arbi-
trary users. This would allow us to use a small set of train-
ing flows, combined with user feedback about suspected PII
leaks, to inform the identification of a PII leaks for a large
number of apps.
Obfuscation of PII. It is well known that flows in the mobile
environment increasingly use encryption (often via SSL).
Sandvine reports that in 2014 in North American mobile
traffic, approximately 12.5% of upstream bytes use SSL, up
from 9.78% the previous year [36]. By comparison, 11.8%
of bytes came from HTTP in 2014, down from 14.66% the
previous year.

A key challenge is how to detect PII leaks in such en-
crypted flows. This work focuses on identifying PII leaks
in plaintext network traffic, so our approach would require
access to the original plaintext content to work. While get-
ting such access is a challenge orthogonal to this work, we
argue that this is feasible for a wide range of traffic if users
run an SSL proxy on a trusted computer (e.g. the user’s own
computer).

In addition to using encryption, the parties leaking PII
may use obfuscation to hide their information leaks. In our
experiments, we found little evidence of this (§ 6.2.5). In
the future, we anticipate combining our approach with static
and dynamic analysis techniques to identify how informa-
tion is being obfuscated, and adjust our system to identify
the obfuscated PII. In the ensuing cat-and-mouse game, we
envision automating this process of reverse engineering ob-
fuscation.

4. RECON GOALS AND DESIGN
The previous section highlights that current OSes are not

providing sufficient visibility into PII leaks, provide few op-
tions to control it, and consequently significant amounts of
potentially sensitive information is exfiltrated from user de-
vices. To address this problem, we built ReCon, a Med-

5



Features

OFFLINE

ONLINE

Training

Model Prediction User 
Interface

Rewriter

ModelFlows

Flows

User Feedback

Figure 3: ReCon Architecture. We conduct feature selec-
tion and model training on labeled network flows, then use
this model to predict whether new network flows are leaking
PII. Based on user feedback, we retrain our classifier.

dle application to visualize how users’ information is shared
with various sites, and allow users to change the information
shared with them (including modifying PII or even blocking
connections entirely). The high-level goal of this research is
to explore the extent to which we can address privacy issues
in mobile systems at the network level. More specifically,
the sub-goals of ReCon are as follows:
• Accurately identify PII in network flows, without requir-

ing knowledge of users’ PII a priori.
• Improve awareness of PII leaks by presenting this infor-

mation to users.
• Automatically improve the classification of sensitive PII

based on user feedback.
• Enable users to change these flows by modifying or re-

moving PII.
To achieve the first three goals, we determine what PII is

leaked in network flows using network trace analysis, ma-
chine learning, and user feedback. We achieve the last goal
by providing users with an interface to block or modify the
PII shared over the network. This paper focuses on how to
address the research challenges in detecting and revealing
PII leaks; as part of ongoing work outside the scope of this
study, we are investigating how to design UIs for modify-
ing PII leaks, how to use crowdsourcing to help design PII-
modifying rules, and how we can use ReCon to provide other
types of privacy (e.g. k-anonymity).

Figure 3 presents the architecture of the ReCon system.
In the “offline” phase we use labeled network traces to de-
termine which features of network flows to use for learn-
ing when PII is being leaked, then train a classifier using
this data, finally producing a model we can use to predict
whether PII is leaked. When new network flows enter ReCon
via Meddle (the “online” phase), we use the model to deter-
mine whether a flow is leaking PII and present the suspected
PII leak to the user via the ReCon user interface (Fig. 4).
We collect labels from users (i.e. whether our suspected
PII is correct) via the UI and integrate the results into our
classifier to improve future predictions (top). In addition,

(a) Screen capture of the ReCon tool

(b) Screen capture of the Map View

Figure 4: Screen capture of the ReCon tool, allowing users
to view how their PII is shared with third parties, and to
validate the suspected PII leaks, and create custom filters to
block or modify leaks.

ReCon supports a map view, where we display the loca-
tion information information that each domain is learning
about the user (bottom). A demo of ReCon is available at
http://goo.gl/v52tbg.

To support modification/blocking of PII, ReCon allows
users to instruct the system to replace the PII with other text
(or nothing) for future flows that leak PII (see the drop-down
boxes in Fig. 4(a)). We allow users to specify blocking or re-
placement of PII based on PII category (shown in the figure),
domain, or app. This protects users’ PII for future network
activity, but does not entirely prevent PII from leaking in
the first place. To address this, we are investigating how to
support interactive PII labeling and filtering, potentially us-
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ing push notifications or other channels to notify the user
of leaks immediately when they are detected (as done in a
related study [12]).
Non-Goals. Note that ReCon is not intended as a blanket re-
placement for existing approaches to improve privacy in the
mobile environment. For example, identifying privacy leaks
from mobile devices may be reliably addressed using infor-
mation flow analysis [17]. However, due to the overheads of
this approach, it is difficult to deploy to users and at scale.
In contrast, Meddle allows us to identify and block unob-
fuscated PII in network flows from arbitrary devices without
requiring OS modifications or taint tracking.

5. RECON IMPLEMENTATION
We now discuss several key aspects of our system imple-

mentation. We evaluate our design decisions in the following
section.

5.1 Detecting PII from Network Flows
The first step in our pipeline is to identify PII leaks from

network flows. We use bro to parse packet traces into logs
for protocol-specific analysis, focusing on HTTP flows be-
cause most PII leaks occur over HTTP. These logs are passed
to a machine learning classifier for labeling as a PII leak or
not.

5.2 Machine Learning Techniques
We use the weka data mining tool [21] to train classifiers

that predict PII leaks. We train our classifier by extracting
relevant features and providing labels for flows that leak PII
as described below.
Feature Extraction. The problem of identifying whether a
flow contains a PII leak is similar to the document classifica-
tion problem,1 so we use the “bag-of-words” model [24]. In
this model, all flows are separated into words (using tokens)
to form a set of all words in the dataset. Then for each flow,
we produce a vector of binary values where each word that
appears in a flow is set to 1, and each word that does not
appear in a flow is set to 0.

A key challenge for feature extraction in network flows is
that, unlike in many documents, there is no standard token
(e.g. whitespace or punctuation) to use for splitting flows
into words. For example, a colon (:) could appear as part
of a MAC address (e.g. 02:00:00:00:00), a time-of-
day (e.g. 11:59), or can even be a delimiter in JSON data
(e.g. username:user007). Further frustrating attempts
to select features, one domain uses “=>” as a delimiter (in
username =>user007). Amusingly, one domain (Ya-
hoo) even leaks PII using SQL: “...from XXX where
(lat = 42.33N and lo = 71.09W) and lang=
’en-GB’”. In these cases, there is no single technique that
covers all flows. Instead, we use a number of different delim-
iters “,;/(){}[]” to handle the common case, and treat
1Here, we treat a network flow as a document, and its structured
data as words.

ambiguous delimiters by inspecting the surrounding content
to determine the encoding type based on context (e.g. look-
ing at content-encoding hints in the HTTP header or whether
the content appears in a GET parameter).
Feature Selection. A bag-of-words model is simple, but
produces far too many features to be useful for training accu-
rate classifiers that can make predictions within milliseconds
(so we can intercept PII leaks in-band with traffic). To help
reduce the feature set, we make the assumption that low-
frequency words are unlikely to be associated with PII leaks,
because when PII does leak, it rarely leaks just once. On the
other hand, session keys and other ephemeral identifiers tend
to appear in exactly one flow. Based on this intuition, we ap-
ply a simple threshold-based filter that removes a feature if
its word frequency is too small. A key challenge is how to
select a reasonable threshold value without sacrificing classi-
fier accuracy, so we select the threshold empirically based on
accuracy and classification time for labeled data (discussed
in Section 6.2.3).

While the above filter removes ephemeral identifiers from
our feature set, we must also address the problem of words
that commonly appear. Several important examples include
information typically found in HTTP flows, such as “content-
length:”, “en-us”, and “expires”. We thus add stop-word-
based filtering on HTTP flows, where the stop words are de-
termined by term frequency—inverse document frequency
(tf-idf). We include only features that have fairly low tf-idf
values.
Per-Domain and General Classifiers. We find that PII leaks
to the same destination domain use the same (or similar) data
encodings to transfer data over the network. Based on this
observation, we build per-domain models (one classifier for
each destination domain) instead of one single general clas-
sifier. We identify the domain associated with each flow
based on the Host: parameter in the HTTP header. If this
header is not available, we can also identify the domain as-
sociated with each IP address by finding the corresponding
DNS lookup in packet traces. This improves prediction ac-
curacy because the classifier typically needs to learn a small
set of association rules. Further, per-domain classifiers im-
prove performance in terms of lower-latency predictions, im-
portant for detecting and intercepting PII leaks in-band.

The above approach works well if there is a sufficiently
large sample of labeled data to train to the per-domain clas-
sifier. For domains that do not see sufficient traffic, we build
a general classifier. Because this general classifier tends to
have low numbers of labeled PII leaks, we are susceptible
to bias (e.g. 5% of flows in our general classifier are PII
leaks). To address this, we use undersampling on negative
samples, using 1/10 sampling to randomly choose a subset
of available samples.

5.3 Automatically Extracting PII
A machine learning classifier indicates whether a flow con-

tains PII, but does not indicate which content in the flow is
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a PII leak. The latter information is critical if we want to
present users with information about their leaks and allow
them to validate the predictions.

A key challenge for extracting PII is that the key/value
pairs used for leaking PII vary across domains and devices;
e.g. the key “device id” or “q” might each indicate an IMEI
value for different domains, but “q” is not always associated
with a PII leak. While we found no solution that perfectly
addresses this ambiguity, we developed effective heuristics
for identifying “suspicious” keys that are likely associated
with PII values.

We use two steps to automatically extract PII leaks from
a network flows classified as a leak. The first step is based
on the relative probability that a suspicious key is associated
with a PII leak, calculated as follows:

Ptype,key = KPII
Kall

where type is the PII type (e.g. IMEI, email address), key is
the suspicious key for that type of PII, KPII is the number of
times the key appeared in PII leaks, and Kall is the number
times the key appeared in all flows. The system looks for
suspicious keys that have Ptype,key greater than a threshold.
We set this value to an empirically determined value, 0.2,
based on finding the best trade-off between false positives
and true positives for our dataset. Because some users may
want more or less sensitivity, we will make this available
as a configurable threshold in ReCon (e.g. if a user wants
to increase the likelihood of increasing true positives at the
potential cost of increased false positives).

In the second step, we leverage the decision tree classifier
structure, and make the observation that the root of each de-
cision tree is likely a key corresponding to a PII value. We
thus add these roots to the suspicious key set and assign them
a large P value.

6. EVALUATION
In this section, we evaluate the effectiveness of ReCon in

terms of accuracy and performance. First, we describe our
methodology, then we describe the results from controlled
experiments, and we conclude by presenting the results of
a user study, focusing on the impact of user feedback and
characterizing observed PII leaks.

6.1 Dataset and Methodology
To evaluate ReCon, we need app-generated traffic and a

set of labels that indicate which of the corresponding flows
leak PII. For this analysis, we reuse the data from controlled
experiments presented in Section 3.1; Table 2 summarizes
this dataset in terms of the number of flows generated by the
apps, and fraction that leak PII. We identify that more than
1,000 flows leak PII, and a significant fraction of those flows
leak PII to known trackers.

We use this labeled dataset to train classifiers and evaluate
their effectiveness using the following metrics. We define a
positive flow to be one that leaks PII; likewise a negative

Manual tests Automated tests
OS (Store) iOS Android Android

(App (Google (AppsApk)
Store) Play)

Automation type Monkey Andrubis
Apps tested 209 100 922 770

HTTP flows (total) 10066 14055 4207 5640
Flows leaking PII 110 697 260 305

Flows to trackers 1740 3715 1105 2604
Flows leaking PII to
trackers

9 353 115 245

Table 2: Summary of HTTP flows observed during our
controlled experiments. Popular Android apps in the
Google Play store tend to leak PIIs to known trackers more
frequently compared to iOS apps. We train our classifier us-
ing these HTTP flows.

flow is one that does not leak PII. A false positive occurs
when a flow does not leak PII but the classifier predicts a PII
leak; a false negative occurs when a flow leaks PII but the
classifier predicts that it does not.
• Correctly Classified Rate (CCR), the sum of true posi-

tive (TP) and true negative (TN) samples divided by the
total number of samples. CCR = (TN + TP )/(TN +
TP + FN + FP ).
A good classifier has a CCR value close to 1.

• False Negative Rate (FNR), the number of false nega-
tives divided by the number of positive samples. FNR =
FN/(FN + TP )

• False Positive Rate (FPR), the number of false positives
divided by the number of negative samples. FPR =
FP/(FP + TN)
A good classifier has FNR and FPR values close to 0.

• Area Under the Curve (AUC), where the curve refers
to receiver operating characteristic (ROC). In this ap-
proach, the x-axis is the false positive rate and y-axis
is the true positive rate (ranging in value from 0 to 1). If
the ROC curve is x = y (AUC = 0.5), then the classi-
fication is no better than randomly guessing the class. A
good classifier has a AUC value close to 1.

To evaluate the efficiency of the classifier, we investigate
the runtime (in milliseconds) for predicting a PII leak and
extracting the suspected PII. We want this value to be signif-
icantly lower than typical Internet latencies.

We use the weka data mining tool to investigate the above
metrics for a variety of machine learning approaches. Specif-
ically, we use Naive Bayes, C4.5 Decision Tree (DT) and
several ensemble methods atop DTs (AdaBoost, Bagging,
and Blending).

6.2 Lab Experiments
In this section, we evaluate the impact of different imple-

mentation decisions and demonstrate the overall effective-
ness of our adopted approach.
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Figure 5: CDF of per-domain classifier accuracy, for alternative classification approaches. For the 16 per-domain clas-
sifiers, DT-based classifiers outperform Naive Bayes, and they exhibit good accuracy (high CCR and AUC, low FPR and
FNR). The vertical line depicts accuracy when using one classifier across all domains, which results in significantly worse
performance.

6.2.1 Machine Learning Approaches
A key question we must address is which classifier to

use. We believe that a DT-based classifier is a reasonable
choice, because most PII leaks occur in structured data (i.e.
key/value pairs), and a decision tree can naturally represent
chained dependencies between these key and the likelihood
of leaking PII.

To evaluate this claim, we tested a variety of classifiers
according to the accuracy metrics from the previous section,
and present the results in Figure 5. We plot the accuracy us-
ing a CDF over the domains that we use to build per-domain
classifiers as described in Section 5.2. Focusing on the top
two graphs (overall accuracy via CCR and AUC), we note
that Naive Bayes has the worst performance, and nearly all
the DT-based ensemble methods have high CCR and AUC
values (Note that the x-axis does not start at 0).

Among the ensemble methods, Blending with DTs and
k-nearest-neighbor (kNN) yields the highest accuracy; how-
ever, the resulting accuracy is not significantly better than a
simple DT. Importantly, a simple DT takes significantly less
time to train than ensemble methods. For ensemble methods,
the training time largely depends on the number of iterations
for training. When we set this value to 10, we find that en-
semble methods take 6.43 times longer to train than a simple
DT on the same dataset. Given the significant extra cost with
minimal gain in accuracy, we currently use simple DTs.

The bottom figures show that most DT-based classifiers
have zero FPs and FNs for the majority of domains. The
domains with the largest false predictions are the trackers
rlcdn.com and turn.com, due to the fact their posi-
tive and negative flows are very similar. For example, the
key partner uid sometimes corresponds to an Android
ID value and other times to some other unknown identifier.

6.2.2 Per-Domain Classifiers
We now evaluate the impact of using per-domain classi-

fiers instead of using one classier for all flows. We build
per-domain classifiers for all domains with greater than 100
samples, at least one of which leaks PII. For the remaining
flows, there is insufficient training data to inform a classifier,
so we create a general classifier based on the assumption that
a significant fraction of the flows will use a common struc-
ture for leaking PII. Once ReCon acquires sufficient labeled
data (e.g. from users or controlled experiments) for a desti-
nation domain, we create a per-domain classifier.

We evaluate the impact of per-domain classifiers on over-
all accuracy in Figure 5. The vertical lines in subgraphs
are corresponding values for the general classifier, which is
trained using all flows from all domains. We can see that the
general classifier has lower accuracy (88% CCR) than >90%
of the per-domain classifiers. Further, training such general
classifiers is expensive in terms of runtime: it takes minutes
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Figure 6: Feature Selection for the tracker domain flurry,
the experiment varies threshold of word occurrence, which
causes the change of number of features, and measure the
trends of Overall Accuracy, False Negative and False Posi-
tive Rate and Training Time.

to train per-domain classifiers for thousands of flows, but it
takes hours to train general classifiers for the same flows.

6.2.3 Feature Selection
The accuracy of the classifiers described in the previous

sections largely depends on correctly identifying the subset
of features for training. Further, the training time for clas-
sifiers increases significantly as the number of features in-
creases, meaning that an efficient classifier requires culling
of unimportant features. A key challenge in ReCon is deter-
mining how to select such features given the large potential
set derived from the bag-of-words approach.

We use Figure 6 to illustrate this problem and how we
address it. Here, we focus on statistics for the tracker do-
main flurry.com (441 flows out of 642 leak PII); other
domains exhibited similar properties.

First, we focus on the threshold to use for including fea-
tures in our training set. As described in Section 5.2, we fil-
ter out features from words that appear infrequently. Fig. 6(a)
shows the impact of this decision on training time, with the
x-axis representing the minimum number of appearances for
a word to be included as a feature, and the y-axis represent-
ing the time required to train a classifier on the resulting fea-
tures. The figure shows that including all words (threshold
= 1) significantly increases training time, but there is a mini-
mal impact on training time if the threshold is greater than or
equal to 20. The corresponding number of features decreases
from 1,903 to 101 as the threshold for word occurrence in-
creases from 1 to 99.

Picking the right number of features is also important for
classifier accuracy, as too many features may lead to overfit-
ting and too few features may lead to an incomplete model.
We evaluate this using Fig. 6(b), where the x-axis is the num-
ber of features, the left y-axis is accuracy (note that the y-
axis does not start at zero), and the right y-axis is training
time. Even small numbers of features lead to high accuracy
for this domain, but increasing the number of features sig-
nificantly beyond 200 does not improve performance at all
(but does increase training time). We see a similar effect on
the FP rate in Fig. 6(c).

While the training time may not seem particularly high
in this context, we note that this cost must be incurred for
each domain and each time we want to update the classifier
with user-labeled flows. With potentially thousands of flows
and labels in large-scale deployments, such training times
can significantly affect the scalability and responsiveness of
ReCon.

With this in mind, we propose the following strategies for
picking threshold values. First, we can use the above anal-
ysis to find the best threshold, then periodically update this
threshold based on new labeled data. Second, we can pick
a fixed threshold based on the average threshold across all
domains (word frequency = 21). We evaluated the impact of
these two approaches, and found they were nearly identical
for our dataset. This suggests that a fixed value is sufficient
for our dataset, but we propose periodically updating this
threshold by performing the above analysis daily or weekly
as a low-priority background process.

6.2.4 PII Extraction Strategies
As discussed in Section 5.3, we use two heuristics to iden-

tify key/value pairs that are likely to leak PII. We use our
dataset to evaluate this approach, and find that the FP and
FN rates are 2.2% and 3.5%, respectively. By comparison, a
naive approach that treats each key/value pair equally yields
FP and FN rates of 5.1% and 18.8%, respectively. Our ap-
proach is significantly better than the naive strawman, and
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Type of PII being leaked
# leaks Device User Contact Loca- Creden-
detected Id. Id. Info. tion tials

A
nd

ru
bi

s

plaintext (A) 195 N-A 15 0 N-A
obfuscated (B) 44 N-A 8 0 N-A
incorrect (C) 156 N-A 8 0 N-A

Total (A+B+C) 396 N-A 31 0 N-A

R
eC

on True Positive 117 21 16 24 1
False Negative 77 0 0 0 0

Table 3: Comparison with Andrubis (which internally
uses TaintDroid). TaintDroid has a higher false positive
rate than ReCon, but catches more device identifiers. After
retraining ReCon with these results, ReCon correctly iden-
tifies all PII leaks. Further, ReCon identifies PII leaks that
TaintDroid does not.

the FP and FN rates are sufficiently low to correctly extract
PII the vast majority of the time.

6.2.5 Comparison with TaintDroid
While the previous sections evaluate the accuracy of our

approach using ground-truth information based on searching
for known PII in network flows, our labeled dataset may miss
PII leaks that are obfuscated or otherwise hidden from our
analysis. We now evaluate our approach by comparing with
an approach that is resilient to such issues: information flow
analysis via TaintDroid.

We use Andrubis [32] to conduct this study. Andrubis is
a public Android app analysis sandbox that leverages Taint-
Droid as part of its analysis to capture data leaks. We sub-
mitted the apps in our dataset from the third party, App-
sApk.com [2] store to Andrubis.

Andrubis installs each app in an emulated Android envi-
ronment and monitors its behavior during a default runtime
of 240 seconds. Besides calling all the apps registered com-
ponents and simulating common events, such as incoming
SMS and location changes, it uses Monkey [9] to generate
approximately 8,000 pseudo-random streams of user events.
After each experiment, it provides a detailed analysis report
including all detected data leaks, as well as the recorded net-
work packet traces.

We analyzed the reports and packet traces, and compared
the result with sending the same packet traces through Re-
Con. Note that TaintDroid may generate false positives (par-
ticularly for arrays and IMSI values), due to propagating
taint labels per variable and IPC message [17]. We thus man-
ually inspected flows flagged as leaking PII, and discarded
cases where the identified PII did not appear in plaintext net-
work flows (i.e. false positives). Table 3 shows the results of
our analysis, grouped by PII type.

We use the plaintext and obfuscated leaks identified by
Andrubis as ground truth, and evaluate our system by send-
ing the Andrubis network traffic through ReCon. The Re-
Con false positive rate was quite low (0.65%), but the false
negative rate was relatively high (21.3%). The vast majority

PII prediction time (ms/flow)
System # HTTP flows min. average max.

iOS 107255 0.05 0.24 5.82
(13 devices) (std.dev=0.88)

Android 39457 0.01 0.11 6.47
(6 devices) (std.dev=2.2)

Table 4: PII prediction time per flow by OS.

of false negative flows were IMEI leaks (12/289 are obfus-
cated and 130/289 are false positive reports from Andrubis).
Importantly, when we retrain ReCon’s classifier with the An-
drubis data, we find that all of the false negatives disappear.
Thus, ReCon is adaptive in that its accuracy should only im-
prove as we provide it more and diverse sets of labeled data.
In the next section we describe early results suggesting that
we can also use crowdsourcing to provide labeled data.

We also note that ReCon identified several instances of PII
leaks that are not tracked by TaintDroid. These include user
credentials (username and password), gender, birthdays, ZIP
codes, and e-mail addresses.

6.3 User Study
We now describe the results of our IRB-approved user

study, where participants used ReCon for at least one week
and up to 20 days, interacted with our system via the UI, and
completed a follow-up survey. Note that our user study was
biased by the fact that most participants are students in com-
puter science and located in the Boston area. While we can-
not claim representativeness, we can use the user feedback
quantitatively, to understand the impact of labeling on our
classifiers. We can also use the study qualitatively, to under-
stand what information was leaked from participant devices
but not those in our controlled experiments, and to under-
stand users’ opinions about privacy.

The study includes 16 users in total, with 13 iOS devices
and 6 Android devices (some users have more than one de-
vice). We initialized the ReCon classifiers based on the re-
sults of the controlled experiments, then retrained the classi-
fiers based on user feedback.

6.3.1 Runtime
While the previous section focused on runtime in terms

of training time, an important goal for ReCon is to predict
and extract PII in-band with network flows so that we can
block/modify the PII as requested by users. As a result, the
network delay experienced by ReCon traffic depends on the
efficiency of the classifier.

We evaluated ReCon performance in terms of PII predic-
tion and extraction times. Table 4 shows the results for mini-
mum, average, and maximum delays. Importantly, the com-
bined cost of these steps never exceeds 6.47 milliseconds per
flow and is typically less than one millisecond. We believe
this is sufficiently small compared to end-to-end delays 10s
or 100s of milliseconds in mobile systems.

6.3.2 Impact of User Feedback
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User feedback on accuracy
Leak Type predicted correct incorrect unlabeled
Device Id. 1158 16 74 1068
User Id. 93 66 0 27
Contact Info. 8 5 1 2
Location 397 392 5 0
Credentials 22 21 1 0

Table 5: Summary of leaks found across all device OSes
in IRB-approved user study (146,712 HTTP flows). De-
vice identifiers, location, and user identifiers are the most
commonly leaked PII .

Response Count

I spent more time reviewing claims made by applications re-
garding access to my data, like contacts, location and so on.

6

I stopped using certain applications because Meddle shows
they leak too much personally identifiable information.

3

I learned to keep location service off unless needed. 2

I used Meddle to block information that I do not want leaked. 2

No change. 3

Table 6: User survey results for the question of whether
information revealed by ReCon changed participant
habits. Most users took action to address privacy as a re-
sult of information provided by ReCon. Some users chose
multiple options.

Participants in our study were asked to view their PII leaks
via the ReCon UI, and label them as correct or incorrect. As
of May 5, 2015, our study covers 146,712 flows, of which
1,678 were predicted to contain PII. Of those, we have 500
TP flows, 81 FP flows and 1,097 unlabeled flows. Table 5
shows the results across all users. Importantly, the users in
the study found few cases when ReCon incorrectly labeled
PII leaks.

For those flows that were incorrectly labeled, we retrained
the classifier with these user labels. After this step, we found
11 false positive flows only, but missed 16 true positive flows.

6.3.3 User Survey
To qualitatively answer whether ReCon is effective, we

conducted a survey where we asked participants “Have you
changed your ways of using your smartphone and its appli-
cations based on the information provided by our system?”
The results are summarized in Table 6. Although our sam-
ple set is small, the survey shows that the majority of users
found the system useful and changed their habits related to
privacy when using mobile devices. This is in line with re-
sults from Balebako et al. [12], where the authors found that
users “do care about applications that share privacy-sensitive
information with third parties, and would want more infor-
mation about data sharing.”

6.3.4 PII Leak Characterization
We now investigate what information was leaked in the

user study. As Table 5 shows, the most commonly leaked
information includes device identifiers, likely used by ad-

Feedback on leaks
Leak Type predicted correct incorrect unlabeled

iO
S

Device Id. 1101 14 74 1013
User Id. 82 55 0 27
Contact Info. 6 3 1 2
Location 343 338 5 0
Credentials 16 16 0 0

A
nd

ro
id

Device Id. 57 2 0 55
User Id. 11 11 0 0
Contact Info. 2 2 0 0
Location 54 54 0 0
Credentials 6 5 1 0

Table 7: Summary of leaks predicted by OS. We observe
a higher number of leaks for iOS because the number of iOS
devices (13) is more than the number of Android devices (6).

Feedback on leaks
#leaks #leaks #leaks #leaks

App (PII Leaked) predicted correct incorrect unlabeled
ABC Player (Gender) 3 3 0 0
Brainscape (Password) 3 3 0 0
All Recipes (Location) 24 3 0 21

Table 8: Examples of PIIs leaked by Apps. The ABC
Player leaked the users’ gender (category User Identifier),
the Brainscape app leaked the password (category Creden-
tial), while the All Recipes app leaked the users’ location
(category Location) in the clear.

vertising and analytic services. The next most common leak
is location information, which typically occurs for apps that
customize their behavior based on user location. We also
find significant amounts of user identifiers being leaked (e.g.
name and gender), suggesting a deeper level of tracking than
simply anonymous device identifiers. Depressingly, even in
our small user study we found 22 cases of credentials being
leaked in plaintext (21 verified). These results highlight the
negative impact of closed mobile systems—even basic secu-
rity is often violated by sending passwords in plaintext over
untrusted channels.

We further investigate the leaks according to OS (Table 7).
We find that iOS users in our study collectively experienced
more data leaks than Android users, and particularly experi-
ence higher relative rates of device identifier, location, and
credential leaks.

We investigated the leaks described above to identify the
apps responsible for suspicious leaks and present the results
in Table 8. For example, the ABC Player app is inferring
and transmitting the user’s gender. The Brainscape app leaks
user credentials, including password, in plaintext. Addition-
ally, we observe that All Recipes–a cookbook app–is track-
ing user locations even when there is no obvious reason for
it to do so.

7. DISCUSSION
Privacy and Incentives. We are using ReCon for an IRB-
approved study that reports data from capturing all of a sub-
ject’s Internet traffic, which raises significant privacy con-
cerns. The study protocol entails informed consent from
subjects who are interviewed, where the risks and benefits
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of our study are explained. The incentive to use ReCon is
Amazon.com gift certificates. To protect the data collected,
we use public key cryptography to encrypt the captured data
before it is stored on disk. Further, subjects can delete their
data and disable monitoring at any time. Per the terms of our
IRB, we cannot make this data public due to privacy con-
cerns. Last, we note that users must trust our system with
their network data; to address this we will make our code
open-source to build this trust and to enable users to deploy
ReCon on a server under their control.

Outside of the context of our IRB-approved study, we pro-
pose the following privacy protections and incentives. First,
we will make our software source code publicly available,
and allow users to run the ReCon system on their own de-
vices inside their own network. This substantially reduces
the privacy risk because user traffic never traverses an un-
trusted machine, and it opens up exciting research oppor-
tunities, such as bumping SSL connections to identify and
block PII in HTTPS flows.

An interesting challenge is how to incorporate a crowd-
sourced classifier in this deployment model. We believe
that we can retrain each user’s classifier locally based on
feedback, then exchange the models themselves with other
users. Because the models should not contain any PII (rather,
they store the features associated with PII), the privacy risk
should be minimal. However, it is an open question whether
we can ensure that PII does not leak via side channels.

In our second deployment model, we have IRB approval
for a follow-up study where we record only the first few
bytes of the HTTP payload, reducing the risk of recording
sensitive information. We conduct informed consent using
an online form, allowing us to enroll users worldwide. The
incentive to use our system is increased privacy; in return,
we collect limited information that allows us to validate the
effectiveness of ReCon and improve its accuracy with user
feedback.
Other Deployment Models. ReCon is currently implemented
as part of a VPN proxy, but the general techniques apply to
any environment with access to user network flows. As such,
it can be integrated into the mobile device OS or carrier net-
works. In this work, we focused on the Meddle-based de-
ployment because it offers the ability to deploy our solution
today, without any OS vendor or carrier support.
Alternative Architectures for PII Sharing. In the cur-
rent implementation, ReCon relies on being able to identify
PII in plaintext flows. Naturally, if users begin to block or
change their PII using ReCon, trackers and advertisers may
resort to obfuscation and encryption to avoid detection. In
response, we can simply retrain ReCon to identify obfus-
cated PII leaks, using available static and dynamic analy-
sis tools that are resilient to these evasion techniques. Of
course, this could lead to an endless cat-and-mouse game of
PII detection evasion. We hope to avoid this using ReCon to
promote explicit PII sharing, where users and third parties
engage in an incentive-driven, mutually beneficial service.

In the case that third parties choose not to participate in such
a scheme, we can provide strong incentives by blocking all
traffic to those sites unless they cooperate.
Dataset Limitations. While our study showed ReCon has
high accuracy in our experiments, we need more data to en-
sure our results apply to a broad set of users. Access to
large network traces could benefit our system, as will a larger
user deployment to both gather a better understanding of PII
leaked during user interaction and to obtain a larger set of
user-labeled data. In such an environment, we must also de-
velop techniques to deal with mislabeled crowdsourced data.

8. CONCLUSION
In this paper we presented ReCon, a system that improves

visibility and control over privacy leaks in traffic from mo-
bile devices. We argued that since the vast majority of PII
leaks occur over the network, detecting these leaks at the net-
work layer is a natural fit. Our approach based on machine
learning has good accuracy and low overhead, and adapts
to feedback from users and other sources of ground-truth
information. As next steps, we will incorporate additional
static and dynamic analysis tools to improve our classifiers
by identifying information leaks that are difficult to detect
from network flows alone.

We believe that this approach opens a new avenue for re-
search on privacy systems, and provides numerous opportu-
nities to improve privacy for average users. As part of our
future work, we are investigating how to use ReCon to build
a privacy system to provide properties such as k-anonymity,
or allow users to explicitly control how much of their infor-
mation is shared with third parties—potentially doing so in
exchange for micropayments or access to app features.
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